Rhind Mathematical
Papyrus (2 of 8) / © 1979 - 2002 by Franz Gnaedinger, Zurich, fg(a)seshat.ch,
fgn(a)bluemail.ch / www.seshat.ch
Rhind 1 / Rhind 2 / Rhind 3 / Rhind 4 / Rhind 5 / Rhind 6 / Rhind 7 / Rhind 8
Multiplying unit fraction series
How much is 184 times 2 '6 '7 times 5 '3 '5 ?
184 times 2 '6 '7 equals
368 31 26
= 425
425 times 5 '3 '5 equals
2125 142 85
= 2352 *
184 times 5 '3 '5 equals
920 61 37
= 1018
1018 times 2 '6 '7 equals
2036 170 145
= 2351 *
average result 2351 '2
(mistake less than '10)
How much is 317 times 3 '3 '11 times 4 '5 '13?
317 times 3 '3 '11 equals
951 106 29
= 1086
1086 times 4 '5 '13 equals
4344 217 84
= 4645
317 times 4 '5 '13 equals
1268 63 24
= 1355
1355 times 3 '3 '11 equals
4065 452 123
= 4640
average result 4642 '2 (mistake less than '30)
How much is 5 '3 '7 '11 by 5 '3 '7 '11? This time we multiply the
product by a factor of 100 and then divide the result by 100 again:
100 times 5 '3 '7 '11 equals
500 33 14
9 = 556
556 times 5 '3 '7 '11 equals
2780 185 79
51 = 3095
3095 / 100 = practically 31 (mistake less than '135)
A calculation of interest
Vizier Milo (a former incarnation of Milo Gardner, whom I shall
mention later :-) saved 68,954 Egyptian Dollars and brings the money to the First
City Bank of Amarna, which offers interest at '101 '202 '303 '606 (2/101, a
little more than 2 percent). How will Milo's fortune rise in the coming years?
Year
1 fortune 68,954
interest 683 341 228 114 =
1,366
year
2 fortune 70,320
interest 696 348 232 116 =
1,392
year
3 fortune 71,712
interest 710 355 237 118 =
1'420
year
4 fortune 73,132
interest 724 362 241 121 =
1,448
year
5 fortune 74,580
interest 738 369 246 123 =
1,476
year
6 fortune 76,056
interest 753 377 251 126 =
1,507
year
7 fortune 77,563
interest 768 384 256 128 =
1,536
year
8 fortune 79,099
interest 783 392 261 131 =
1,567
year
9 fortune 80,666
interest 799 399 266 133 =
1,597
year
10 fortune 82,263
interest 814 407 271 136 =
1,628
year
11 fortune 83,891
interest 831 415 277 138 =
1,661
year
12 fortune 85,552
interest 847 424 282 141 =
1,694
year
13 fortune 87,246
interest 864 432 288 144 =
1,728
year
14 fortune 88,974
interest 881 440 294 147 =
1,762
YEAR
15 FORTUNE 90,736 DOLLARS
And the exact value?
68954 x (1 + 2/101) exp 14 = 68954 x 1.3158971... = 90736.365...
Although we have rounded all numbers, the margin of error is not even
40 cents. And if we begin with 6,895,400 cents instead of 68,954 dollars, the
mistake would be less than 4 (four) cents.
Playing with beans
o o o
o o o o
o o o o
o o o o o o o o o o
o o o o o
o o o o o o o o o o oooooooooooo
3 + 4 + 5
= 3 x 4 =
2 x 6 = 1 x 12
oooooooooooo 12
or 1
oooooo oooooo 6+6
or 1/2 + 1/2
oooooo oo oooo 6+2+4
or 1/2 + 1/6 + 1/3
oooooo oo o ooo 6+2+1+3
or 1/2 + 1/6 + 1/12 + 1/4
1/1 = '1 1/2 = '2 1/3 = '3
1/4 = '4 1/6 = '6 1/12 = '12
1 = '1 1 = '1
1 = '2 '2 1 = '1x2 '2
1 = '2 '6 '3 1 = '1x2 '2x3 '3
1 = '2 '6 '12 '4 1 = '1x2 '2x3 '3x4 '4
RHIND MATHEMATICAL PAPYRUS,
duplations and conversions
The famous Rhind Mathematical Papyrus was written around 1650 BC,
and represents a copy of a lost scroll dated around 1850 BC. At the begin of
the RMP are found divisions of 2 by the odd numbers from 5 up to 101. Examples:
"5 = '3 '15 (2/5 = 1/3 + 1/15)
"7 = '4 '28 (2/7 = 1/4 + 1/28)
"9 = '6 '18 (2/9 = 1/6 + 1/18)
"11 = '6 '66
"13 = '8 '52 '104
"19 = '12 '76 '114
"35 = '30 '42
"43 = '42 '86 '129 '301
"67 = '40 '268 '670
"91 = '70 '130
"95 = '60 '380 '570
"99 = '66 '198
"101
= '101 '202 '303 '606
The calculations are carried out as follows. If you wish to divide
2 by any number a, note the numbers 1 and a. Divide them by handy numbers until
you get a number b that is smaller than 2. Now subtract number b from 2 and
complete your series. Examples:
1
9 (number a)
'3 3
'6 1 '2 (number b)
2
minus 1'2 equals '2
'18 '2
"9 = '6 '18 (since 1'2 '2 equals 2)
1 19
'3 6 '3 (divided by 3)
'6 3 '6 (divided by 2)
'12 1 '2 '12 (divided by 2)
2
minus 1'2'12 equals ??
24
minus 12+6+1 equals 5 or 3 + 2
(multiplied by 12)
2
minus 1'2'12 equals '4 '6
(divided by 12)
'76 '4
'114 '6
"19 = '12 '76 '114 (since 1'2'12 '4 '6 equals 2)
1 35
'5
7
'15
2 '3
'30
1 '6
2 minus 1'6 equals '2 '3
35 divided by 2+3 equals 7 / remainder '2x3x7
equals '42
"35 = '30 '42
1 43
'2 21 '2 (divided by 2)
'6 7 '6 (divided by 3)
'42 1 '42 (divided by 7)
2
minus 1'42 equals '2 '3 '7
'86 '2
'129 '3
'301 '7
"43 = '42 '86 '129 '301
(since 1'42 '2 '3 '7 equals 2)
1 91
'7 13
'14
6 '2
'70
1 '5
'10
2 minus 1'5'10 equals '2 '5
91
divided by 2+5 equals 13 / remainder '2x5x13
or '130
"91 = '70 '130
1 93
'31 3
'62 1'2
2
minus 1'2 equals '2
'186 '2
"93 = '62 '186 (since 1'2 '2
equals 2)
1 101
'101 1
2
minus 1 equals '2 '3 '6
'202 '2 '303
'3 '606 '6
"101 = '101 '202 '303 '606 (since 1 '2 '3 '6 equals 2)
Down under algebra
Beginners may carry out all divisions from 2/5 to 2/101 and in so
doing learn how to work with unit fraction series. Advanced learners may go a
step further and look out for number patterns providing the same conversions:
1 = '2
'1x2 =
'2 '2
'2
= '3 '2x3 = '3
'6
'3
= '4 '3x4 = '4
'12
'4
= '5 '4x5 = '5
'20
'5
= '6 '5x6 = '6
'30
'6
= '7 '6x7 = '7
'42
'7
= '8 '7x8 = '8
'56 general form: 'a = 'a+1 'aa+a
1
= '2 '2 --------
"1 = '1 '1
'2
= '3 '6
'3
= '4 '12 -------
"3 = '2 '6
'4
= '5 '20
'5
= '6 '30 -------
"5 = '3 '15 (RMP)
'6
= '7 '42
'7
= '8 '56 -------
"7 = '4 '28
'8
= '9 '72
'9
= '10 '90 ------
"9 = '5 '45 (RMP)
'10
= '11 '110
'11 = '12
'132 ---- "11 = '6 '66 (RMP)
...............................................
The first number pattern generates a pair of remarkable series:
1 = '2 '2
'2 = '6 '3
'3 = '12 '4
'4 = '20 '5
'5 = '30 '6
'6
= '42 ...
1 = '2
'6 '12 '20
'30 '42 ...
1 = '1x2
'2x3 '3x4 '4x5
'5x6 '6x7 ...
1 = '1
1 = '1x2 '2
1 = '1x2 '2x3 '3
1 = '1x2 '2x3 '3x4 '4
1 = '1x2 '2x3 '3x4 '4x5 '5
1 = '1x2 '2x3 '3x4 '4x5 '5x6 '6
1 = '1x2 '2x3 '3x4 '4x5 '5x6 '6x7 '7
........................................
1 =
'2 '2
'2 = '3 '6
'6 = '7 '42
'42 = '43 1806
1 =
'1
1 =
'2 '2
1 =
'2 '3 '6
1 =
'2 '3 '7 '42
1 =
'2 '3 '7 '43 '1806
1 =
'2 '3 '7 '43 '1807 '3263443 ...
The equation "3 = '2 '6 can be used for many simple
conversions:
"9 equals '6 '18
(RMP)
"15 equals '10 '30 (RMP)
"21 equals '14 '42 (RMP)
..........................
"87 equals '58 '174 (RMP)
"93 equals '62 '186 (RMP)
"99 equals '66 '198 (RMP)
The principle of the first number pattern may be expanded as
follows:
1 = '2 '2
= '3 '3 '3 = '4 '4 '4 '4 ...
'2 = '3 '6
= '4 '8 '8 = '5 '10 '10
'10 ...
'3 = '4 '12
= '5 '15 '15 = '6 '18 '18
'18 ...
'4 = '5 '20
= '6 '24 '24 = '7 '28 '28
'28 ...
'5 = '6 '30 = '7 '35
'35 = '8 '40 '40 '40 ...
................................................
Modifying the third column:
1
= '4 '4
'2 ----------- "1 = '2 '2 '1
'2
= '5 '10 '5
'3
= '6 '18 '9
'4
= '7 '28
'14
'5
= '8 '40
'20 ---------- "5 = '4 '20 '10
'6
= '9 '54
'27
'7
= '10 '70 '35
'8
= '11 '88 '44
'9
= '12 '108 '54 ----------
"9 = '6 '54 '27
'10 = '13
'130 '65
'11 = '14
'154 '77
'12 = '15
'180 '90
'13 = '16
'208 '104 -------- "13 = '8 '104 '52 (RMP)
A more demanding general pattern:
"1
equals '1 plus
'1x1 of 1 (2/1 = 1/1 + 1/1x1)
"3
equals '3 plus
'3x3 of 3 (2/3 = 1/3 +
3/3x3) 3=2+1
'2 plus
'3x2 of 1 (2/3 = 1/2 + 1/2x3)
"5
equals '5 plus
'5x5 of 5 (2/5 = 1/5 +
5/5x5) 5=3+2
'4 plus
'5x4 of 3 (2/5 = 1/4 +
3/4x5) 3=2+1
'3 plus
'5x3 of 1 (2/3 = 1/3 + 1/3x5)
"7
equals '7 plus
'7x7 of 7 (2/7 = 1/7 +
7/7x7) 7=4+3
'6 plus
'7x6 of 5 (2/7 = 1/6 +
5/6x7) 5=3+2
'5 plus
'7x5 of 3 (2/7 = 1/5 +
3/5x7) 3=2+1
'4 plus
'7x4 of 1 (2/7 = 1/4 + 1/4x7)
"9 equals '9 plus
'9x9 of 9
'8 plus
'9x8 of 7
'7 plus
'9x7 of 5
'6 plus
'9x6 of 3
'5 plus
'9x5 of 1
........................................................
All these and many more number patterns are contained in Milo
Gardner's formulas:
2/p - 1/a = (2a - p) / pa
n/p - 1/a = (na - p) / pa
It was Milo Gardner who stimulated my interest in unit fractions,
back in Spring 1997. I thank him again for his many patient e-mails.
Rhind 1 / Rhind 2 / Rhind 3 / Rhind 4 / Rhind 5 / Rhind 6 / Rhind 7 / Rhind 8