46 Lessons in
Early Geometry, part 2/10 / provisional version written in freestyle English /
a corrected version will follow in March, April or May (hopefully) / Franz
Gnaedinger / February 2003 / www.seshat.ch
early geometry 1 / early geometry 2 / early
geometry 3 / early geometry 4 / early geometry 5 / early geometry 6
/ early geometry 7 / early
geometry 8 / early geometry 9 / early geometry 10
Lesson 9
If a square measures 3 by 4 units, the
diagonals measure 5 units. Let me prove this by means of a square whose side
measures 3+4 or 4+3 = 7 units (please consider the points and capitals in the
ASCII drawings below as dimensionless):
a a a . d d d d i i i i I h h h
a a a . d d d d i
h
a a a . d d d d i
h
. . . . . . . . F h
oblique square FGHI
e e e . b b b b f
H side c, area cc
e e e . b b b b f
g
e e e . b b b b f
g
e e e . b b b b f f f G g g g g
The two squares measure 7 by 7 units each:
a+b = 3+4 = b+a = 4+3 = 7 7x7 = 49
The left square consists of two small squares
and rectangles:
aa = 3x3 = 9
bb = 4x4 = 16 ab = 3x4 = ba =
4x3 = 12
The right square consists of an oblique square
(FGHI) and four rectangular triangles:
FGHI = cc = ?? a-b-c = 3-4-? b-a-c = 4-3-?
The rectangles and the four triangles have the
same area:
3x4 + 4x3 = 3x4/2 + 4x3/2 +
3x4/2 + 4x3/2 = 24
This means that also the remaining figures,
namely the two small squares and the oblique square, have the same area:
aa + bb = cc (49-24 =)
3x3 + 4x4 = 25 = 5x5
The side of the oblique square measures 5
units, exactly, with no mistake at all
The above reasonings hold for any values of a
and b
aa + bb = cc
triple a-b-c (rectangular
triangle)
3x3 plus 4x4 equals 5x5 triple
6x6 plus 8x8 equals 10x10 triple
5x5 plus 12x12 equals 13x13 triple
8x8 plus 15x15 equals 17x17 triple
20x20 plus 21x21 equals 29x29 triple 20-21-29
The basic theorem of geometry can easily be
expanded into 3 dimensions:
aa + bb + cc = dd quadruple a-b-c-d
1x1 + 2x2 + 2x2 = 3x3 quadruple 1-2-2-3
8x8 + 9x9 + 12x12 = 17x17 quadruple 8-9-12-17
Lesson 10
My first number column for the approximate
calculation of the square can also be used as a generator of triples, which
again approximate the square:
1
1 2
2
3 4
5
7 10
12
17 24
29 41
58
70 99
140
169 239
338
408 577
....
1
1 2 2x2
1x3 1x1+2x2
2
3 4 4
3 5
rectangular triangle 4-3-5,
periphery 3x4 = 12
area 1x1x2x3 = 6
radius of the inscribed circle 1x1 = 1
diameter 1x2 = 2
tangents of the half angles 1, 1/2, 1/3
rectangle 3x4
2
3 4 4x5
3x7 2x2+5x5
5
7 10 20
21 29
rectangular triangle 20-21-29
periphery 7x10 = 70
area 2x3x5x7 = 210
radius of the inscribed circle 2x3 = 6,
diameter 3x4 = 12
tangents of the half angles 1, 2/5, 3/7
rectangle 20x21
5
7 10 10x12
7x17 5x5+12x12
12
17 24 120
119 169
rectangular triangle 120-119-169
periphery 17x24 = 408
area 5x7x12x17 = 7140
radius of the inscribed circle 5x7 = 35
diameter 7x10 = 70
tangents of the half angles 1, 5/12, 7/17
rectangle 119x120
12
17 24 24x29
17x41 12x12+29x29
29
41 58 696
697 2545
rectangular triangle 696-697-2545
periphery 41x58 = 2378
area 12x17x29x41 = 242,556
radius of the inscribed circle 12x17 = 204
diameter 17x24 = 408
tangents of the half angles 1, 12/29, 17/41
rectangle 696x697
and so on
The resulting rectangles again approximate the
square: 3x4 (diagonal 5), 20x21 (29), 119x120 (169), 696x697 (985), 4059x4060
(5741), 23660x23661 (33461) ...
Lesson 11
The number patterns for the calculation of the
square can be started with any pair of numbers a and b, and every such number
pattern can be used as a generator of triples:
a
b 2a
a+b
b+2a 2(a+b)
2
7 4
9
11 18
20
29 40
49
69 98
118 167
236
... ...
...
2
7 4 4x9
7x11 2x2+9x9
9
11 18 36
77 85
rectangular triangle 36-77-85
periphery 11x18 = 198
area 2x7x9x11 = 1386
radius of the inscribed circle 2x7 = 14
diameter 7x4 = 28
tangents of the half angles 1, 2/9, 7/11
9
11 18 18x20
11x29 9x9+20x20
20
29 40 360
319 481
rectangular triangle 360-319-481
periphery 29x40 = 1160
area 9x11x20x29 = 57420
radius of the inscribed circle 9x11 = 99
diameter 11x18 = 198
tangents of the half angles 1, 9/20, 11/29
and so on
1
999 2
1000
1001 2000
2001 3002
....
2x1000, 999x1001, 1x1+2001x2001 triple 2000-999999-1000001
and so on
Lesson 12
The number columns for the calculation of the
square also generate quadruples, integer solutions of right-parallelepipeds and
their cubic diagonals:
1
1 2 2
7 4
2
3 4 9
11 18
5
7 10 20
29 40
12
17 .. 49
69 ..
1 1 2
1x2=2 1x1=1 1x2=2
1+2=3 quadruple 2-1-2-3
2 3 4
3x4=12 3x3=9 2x4=8
9+8=17 quadruple 12-9-8-17
5 7 10
7x10=70 7x7=49 5x10=50
49+50=99 q 70-49-50-99
and so on
2 7 4
7x4=28 7x7=49 2x4=8
49+8=57
quadruple 28-49-8-57
9 11 18
11x18=198 11x11=121 9x18=162
121+162=283
quadruple 198-121-162-283
20 29 40
29x40=1160 29x29=841 20x40=800
841+841=1641
quadruple 1160-841-800-1641
and so on
In algebraic terms:
a
b 2a
a+b b+2a
2(a+b)
triple
2a(a+b) -- b(b+2a) -- aa+(a+b)(a+b)
=
2aa+2ab -- bb+2ab -- 2aa+2ab+bb
first quadruple bx2a -- bb -- ax2a -- bb+(ax2a)
= 2ab
-- bb -- 2aa -- bb+2aa
triple:
2aa + 2ab
2ab + bb
2aa + 2ab + bb
quadruple: 2ab
bb
2aa
2aa +
bb
a=1, b=1, triple 4-3-5, quadruple 2-1-2-3
a=12, b=19, t 744-817-1105, q 288-456-361-649
early geometry 1 / early geometry 2 / early
geometry 3 / early geometry 4 / early geometry 5 / early geometry 6
/ early geometry 7 / early
geometry 8 / early geometry 9 / early geometry 10